
 

 

  
Abstract— This paper follows up on a research paper presented at 

the 2014 International Conference for Pure Mathematics Applied 

Mathematics and Computations Methods in July Santorini Greece 

[1]. We paid attention to the methodology of two integral transform 

methods for solving nonlinear fractional partial differential equations. 

On one hand, the Homotopy Perturbation Sumudu Transform Method 

(HPSTM) is the coupling of the Sumudu transform and the HPM 

using He’s polynomials. On the other hand, the Homotopy 

Decomposition Method (HDM) is the coupling of Adomian 

Decomposition Method and Perturbation Method. Both methods are 

very powerful and efficient techniques for solving different kinds of 

linear and nonlinear fractional differential equations arising in 

different fields of science and engineering. However, the HDM has 

an advantage over the HPSTM which is that it solves the nonlinear 

problems using only the inverse operator which is basically the 

fractional integral. There is no need to use any other inverse 

transform to find the components of the series solutions like in the 

case of HPSTM. As a consequence the calculations involved in HDM 

are very simple and straightforward. 

Keywords— Homotopy decomposition method, Integral 
transforms, nonlinear fractional differential equation, Sumudu 
transform.  

I. INTRODUCTION 

Fractional Calculus has been used to model some physical and 
engineering processes, which are found to be best described 
by fractional differential equations. It is worth nothing that the 
standard mathematical models of integer-order derivatives, 
including nonlinear models, do not work adequately in many 
cases. In the recent years, fractional calculus has played a very 
important role in various fields an excellent literature of this 
can be found in [2-11]. However, analytical solutions of these 
equations are quickly difficult to find. 
  One can find in the literature a wide class of methods dealing 
with approximate solutions to problems described by 
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nonlinear fractional differential equations, asymptotic and 
perturbation methods for instance. Perturbation methods carry 
among others the inconvenient that approximate solutions 
engage series of small parameters which cause difficulties 
since most nonlinear problems have no small parameters at all. 
Even though a suitable choice of small parameters 
occasionally leads to ideal solutions, in most cases unsuitable 
choices lead to serious effects in the solutions. Therefore, an 
analytical method which does not require a small parameter in 
the equation modeling the phenomenon is welcome. To deal 
with the pitfall presented by perturbation methods for solving 
nonlinear equations, we present a literature review in some 
new asymptotic methods aiming for the search of solitary 
solutions of nonlinear differential equations, nonlinear 
differential-difference equations, and nonlinear fractional 
differential equations; see in [12]. The homotopy perturbation 
method (HPM) was first initiated by He [13]. The HPM was 
also studied by many authors to present approximate and exact 
solution of linear and nonlinear equations arising in various 
scientific and technological fields [14–24]. The Adomian 
decomposition method (ADM) [25] and variational iteration 
method (VIM) [26] have also been applied to study the 
various physical problems. The Homotopy decomposition 
method (HDM) was recently proposed by [27-28] to solve the 
groundwater flow equation and the modified fractional KDV 
equation [27-28]. The Homotopy decomposition method is 
actually the combination of perturbation method and Adomian 
decomposition method.  Singh et al. [29] studied solutions of 
linear and nonlinear partial differential equations by using the 
homotopy perturbation Sumudu transform method (HPSTM). 
The HPSTM is a combination of Sumudu transform, HPM, 
and He’s polynomials.  
 

II. SUMUDU TRANSFORM 
The Sumudu transform, is an integral transform similar to 

the Laplace transform, introduced in the early 1990s by 
Gamage K. Watugala [30] to solve differential equations and 
control engineering problems. It is equivalent to the Laplace-
Carson transform with the substitution 𝑝𝑝 =  1/𝑢𝑢. Sumudu is a 
Sinhala  word, meaning “smooth”. The Sumudu transform of a 
function 𝑓𝑓(𝑡𝑡), defined for all real numbers𝑡𝑡 ≥  0, is the 
function 𝐹𝐹𝑠𝑠(𝑢𝑢), defined by:       (2.1).  

𝑆𝑆�𝑓𝑓(𝑡𝑡)� = 𝐹𝐹𝑠𝑠(𝑢𝑢) = �
1
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∞
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A. Properties of Sumudu Transform [31-34] 

• The transform of a Heaviside unit step function is a 
Heaviside unit step function in the transformed 
domain. 

• The transform of a Heaviside unit ramp function is a 
Heaviside unit ramp function in the transformed 
domain. 

• The transform of a monomial 𝑡𝑡𝑛𝑛  is the called 
monomial 𝑆𝑆(𝑡𝑡𝑛𝑛) = 𝑛𝑛!𝑢𝑢𝑛𝑛 . 

• If 𝑓𝑓(𝑡𝑡) is a monotonically increasing function, so is 
𝐹𝐹(𝑢𝑢) and the converse is true for decreasing 
functions. 

• The Sumudu transform can be defined for functions 
which are discontinuous at the origin. In that case the 
two branches of the function should be transformed 
separately. 

• If 𝑓𝑓(𝑡𝑡) is 𝐶𝐶 𝑛𝑛continuous at the origin, so is the 
transformation 𝐹𝐹(𝑢𝑢). 

• The limit of 𝑓𝑓(𝑡𝑡) as 𝑡𝑡 tends to zero is equal to the 
limit of 𝐹𝐹(𝑢𝑢) as 𝑢𝑢 tends to zero provided both limits 
exist. 

• The limit of 𝑓𝑓(𝑡𝑡) as 𝑡𝑡 tends to infinity is equal to the 
limit of 𝐹𝐹(𝑢𝑢) as 𝑢𝑢 tends to infinity provided both 
limits exist. 

• Scaling of the function by a factor 𝑐𝑐 >  0 to form the 
function 𝑓𝑓(𝑐𝑐𝑡𝑡) gives a transform 𝐹𝐹(𝑐𝑐𝑢𝑢) which is the 
result of scaling by the same factor. 

.  

III. BASIC DEFINITIONS OF FRACTIONAL CALCULUS 
Definition 1   A real function 𝑓𝑓(𝑒𝑒), 𝑒𝑒 >  0, is said to be in the 

space ∁𝜇𝜇 , µϵℝ if there exists a real number p > µ, such that 

f(x) = 𝑒𝑒𝑝𝑝h(x), where ℎ(𝑒𝑒)𝜖𝜖 𝐶𝐶 [0,∞), and it is said to be in 

space 𝐶𝐶𝜇𝜇𝑚𝑚  if  𝑓𝑓(𝑚𝑚 )𝜖𝜖 𝐶𝐶𝜇𝜇  , m∈ℕ 

Definition 2 The Riemann-Liouville fractional integral 

operator of order α≥0, of a function 𝑓𝑓𝜖𝜖𝐶𝐶𝜇𝜇 , μ≥-1, is defined as                                                                               

                                                                                           (3.1)                                                       

𝐽𝐽𝛼𝛼  𝑓𝑓(𝑒𝑒) =
1

𝛤𝛤(𝛼𝛼)
� (𝑒𝑒 − 𝑡𝑡)𝛼𝛼−1𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡,   𝛼𝛼 > 0, 𝑒𝑒 > 0
𝑒𝑒

0
 

𝐽𝐽0𝑓𝑓(𝑒𝑒) = 𝑓𝑓(𝑒𝑒). 

Properties of the operator can be found in [1-4] we mention 

only the following: 

 

For      𝑓𝑓𝜖𝜖 𝐶𝐶𝜇𝜇  , 𝜇𝜇 ≥  −1 ,𝛼𝛼, 𝛽𝛽 ≥ 0 and 𝛾𝛾 >  −1:                     

(3.2) 

𝐽𝐽𝛼𝛼𝐽𝐽𝛽𝛽𝑓𝑓(𝑒𝑒) = 𝐽𝐽𝛼𝛼+𝛽𝛽𝑓𝑓(𝑒𝑒),    𝐽𝐽𝛼𝛼𝐽𝐽𝛽𝛽𝑓𝑓(𝑒𝑒) = 𝐽𝐽𝛽𝛽 𝐽𝐽𝛼𝛼𝑓𝑓(𝑒𝑒)            

 𝐽𝐽𝛼𝛼𝑒𝑒𝛾𝛾 = 𝛤𝛤(𝛾𝛾+1)
𝛤𝛤(𝛼𝛼+𝛾𝛾+1)

𝑒𝑒𝛼𝛼+𝛾𝛾                   . 

Lemma 1 If 𝑚𝑚 − 1 < 𝛼𝛼 ≤ 𝑚𝑚,𝑚𝑚 ∈ ℕ 𝑎𝑎𝑛𝑛𝑑𝑑 𝑓𝑓 ∈ 𝐶𝐶𝜇𝜇𝑚𝑚 , 𝜇𝜇 ≥ −1,  

then 

   𝐷𝐷𝛼𝛼𝐽𝐽𝛼𝛼𝑓𝑓(𝑒𝑒) = 𝑓𝑓(𝑒𝑒) and,     𝐽𝐽𝛼𝛼𝐷𝐷0
𝛼𝛼𝑓𝑓(𝑒𝑒) = 𝑓𝑓(𝑒𝑒) −

∑ 𝑓𝑓(𝑘𝑘)(0+) 𝑒𝑒
𝑘𝑘

𝑘𝑘 !
 , 𝑒𝑒 > 0  𝑚𝑚−1

𝑘𝑘=0               (3.3) 

Definition 3: Partial Derivatives of Fractional order 

Assume now that 𝑓𝑓(𝒙𝒙) is a function of n variables 𝑒𝑒𝑖𝑖  𝑖𝑖 =

1, … … ,𝑛𝑛    also of class 𝐶𝐶 on 𝐷𝐷 ∈ ℝ𝑛𝑛 . As an extension of 

definition 2 we define partial derivative of order 𝛼𝛼 for 𝑓𝑓(𝑒𝑒) 

respect to 𝑒𝑒𝑖𝑖  the function  

                                                                                             (3.4)                                                                   

𝑎𝑎𝑎𝑎𝒙𝒙𝛼𝛼𝑓𝑓 =
1

Γ(𝑚𝑚 − 𝛼𝛼)�
(𝑒𝑒𝑖𝑖 − 𝑡𝑡)𝑚𝑚−𝛼𝛼−1

𝑒𝑒𝑖𝑖

𝑎𝑎
𝑎𝑎𝑒𝑒𝑖𝑖
𝑚𝑚𝑓𝑓�𝑒𝑒𝑗𝑗 �|𝑒𝑒𝑗𝑗=𝑡𝑡𝑑𝑑𝑡𝑡 

If it exists, where  𝑎𝑎𝑒𝑒𝑖𝑖
𝑚𝑚   is the usual partial derivative of integer 

order m. 

Definition 4:  The Sumudu transform of the Caputo fractional 

derivative is defined as follows [30-33]:                                                                                                           

                                                                                             (3.5) 

𝑆𝑆[𝐷𝐷𝑡𝑡𝛼𝛼𝑓𝑓(𝑡𝑡)] = 𝑢𝑢−𝛼𝛼𝑆𝑆[𝑓𝑓(𝑡𝑡)] − � 𝑢𝑢−𝛼𝛼+𝑘𝑘𝑓𝑓(𝑘𝑘)(0+)
𝑚𝑚−1

𝑘𝑘=0

, (𝑚𝑚− 1 < 𝛼𝛼

≤ 𝑚𝑚) 
 
 

IV.  SOLUTION BY (HPSTM) AND (HDM) 
 

IV.I Basic Idea of HPSTM 

We illustrate the basic idea of this method, by considering a 

general fractional nonlinear non-homogeneous partial 

differential equation with the initial condition of the form:  

(4.1) 

           𝐷𝐷𝑡𝑡𝛼𝛼𝑈𝑈(𝑒𝑒, 𝑡𝑡) = 𝐿𝐿�𝑈𝑈(𝑒𝑒, 𝑡𝑡)� + 𝑁𝑁�𝑈𝑈(𝑒𝑒, 𝑡𝑡)� + 𝑓𝑓(𝑒𝑒, 𝑡𝑡);𝛼𝛼 > 0                      

subjected to the initial conditions 

𝐷𝐷0
𝑘𝑘𝑈𝑈(𝑒𝑒, 0) = 𝑔𝑔𝑘𝑘 , (𝑘𝑘 = 0, … …𝑛𝑛 − 1),𝐷𝐷0

𝑛𝑛𝑈𝑈(𝑒𝑒, 0)

= 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝑛𝑛 = [𝛼𝛼] 

where, 𝐷𝐷𝑡𝑡𝛼𝛼   denotes without loss of generality the Caputo 

fraction derivative operator, 𝑓𝑓 is a known function, 𝑁𝑁 is the 

general nonlinear fractional differential operator and 𝐿𝐿 

represents a linear fractional differential operator.  
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Applying the Sumudu Transform on Both sides of equation 

(4.1), we obtain: 

         𝑆𝑆[𝐷𝐷𝑡𝑡𝛼𝛼𝑈𝑈(𝑒𝑒, 𝑡𝑡]) = 𝑆𝑆[𝐿𝐿�𝑈𝑈(𝑒𝑒, 𝑡𝑡)�] + 𝑆𝑆[𝑁𝑁�𝑈𝑈(𝑒𝑒, 𝑡𝑡)�] +

𝑆𝑆[𝑓𝑓(𝑒𝑒, 𝑡𝑡)]                                                                             (4.2) 

Using the property of the Sumudu transform, we have 

 𝑆𝑆[𝑈𝑈(𝑒𝑒, 𝑡𝑡)] = 𝑢𝑢𝛼𝛼𝑆𝑆�𝐿𝐿�𝑈𝑈(𝑒𝑒, 𝑡𝑡)�� + 𝑢𝑢𝛼𝛼𝑆𝑆�𝑁𝑁�𝑈𝑈(𝑒𝑒, 𝑡𝑡)�� +

𝑢𝑢𝛼𝛼𝑆𝑆[𝑓𝑓(𝑒𝑒, 𝑡𝑡)] + 𝑔𝑔(𝑒𝑒, 𝑡𝑡)    (4.3) 

Now applying the Sumudu inverse on both sides of (4.3) we 

obtain: 

 

          𝑈𝑈(𝑒𝑒, 𝑡𝑡) = 𝑆𝑆−1 �𝑢𝑢𝛼𝛼𝑆𝑆�𝐿𝐿�𝑈𝑈(𝑒𝑒, 𝑡𝑡)�� + 𝑢𝑢𝛼𝛼𝑆𝑆�𝑁𝑁�𝑈𝑈(𝑒𝑒, 𝑡𝑡)��� +

𝐺𝐺(𝑒𝑒, 𝑡𝑡)                                                                                 (4.4) 
𝐺𝐺(𝑒𝑒, 𝑡𝑡) represents the term arising from the known function 

𝑓𝑓(𝑒𝑒, 𝑡𝑡)  and the initial conditions. 

 

Now we apply the HPM:                                                                                        
(4.5) 

𝑈𝑈(𝑒𝑒, 𝑡𝑡) = �𝑝𝑝𝑛𝑛𝑈𝑈𝑛𝑛(𝑒𝑒, 𝑡𝑡)
∞

𝑛𝑛=0

 

The nonlinear tern can be decomposed                                                                  
(4.6) 

 

𝑁𝑁𝑈𝑈(𝑒𝑒, 𝑡𝑡) = �𝑝𝑝𝑛𝑛ℋ𝑛𝑛 (𝑈𝑈)
∞

𝑛𝑛=0

 

using the He’s polynomialℋ𝑛𝑛(𝑈𝑈) [23] given as:                                                  
(4.7) 

ℋ𝑛𝑛(𝑈𝑈0,⋯⋯⋯ ,𝑈𝑈𝑛𝑛) =
1
𝑛𝑛!

𝑎𝑎𝑛𝑛

𝑎𝑎𝑝𝑝𝑛𝑛
�𝑁𝑁 ��𝑝𝑝𝑗𝑗𝑈𝑈𝑗𝑗 (𝑒𝑒, 𝑡𝑡)

∞

𝑗𝑗=0

�� ,𝑛𝑛

= 0,1,2⋯⋯⋯ 

Substituting (4.5) and (4.6) ∑ 𝑝𝑝𝑛𝑛𝑈𝑈𝑛𝑛(𝑒𝑒, 𝑡𝑡)∞
𝑛𝑛=0 = 𝐺𝐺(𝑒𝑒, 𝑡𝑡) +

𝑝𝑝 �𝑆𝑆−1�𝑢𝑢𝛼𝛼𝑆𝑆[𝐿𝐿(∑ 𝑝𝑝𝑛𝑛𝑈𝑈𝑛𝑛(𝑒𝑒, 𝑡𝑡)∞
𝑛𝑛=0 )] +

𝑢𝑢𝛼𝛼𝑆𝑆[𝑁𝑁(∑ 𝑝𝑝𝑛𝑛𝑈𝑈𝑛𝑛(𝑒𝑒, 𝑡𝑡)∞
𝑛𝑛=0 )]��                                           (4.8)                                                

which is the coupling of the Sumudu transform and the HPM 

using He’s polynomials. Comparing the coefficients of like 

powers of  𝑝𝑝, the following approximations are obtained. 

𝑝𝑝0: 𝑈𝑈0(𝑒𝑒, 𝑡𝑡) = 𝐺𝐺(𝑒𝑒, 𝑡𝑡), 

𝑝𝑝1:  𝑈𝑈1(𝑒𝑒, 𝑡𝑡) = 𝑆𝑆−1 �𝑢𝑢𝛼𝛼𝑆𝑆�𝐿𝐿�𝑈𝑈0(𝑒𝑒, 𝑡𝑡)� + 𝐻𝐻0(𝑈𝑈)��, 

𝑝𝑝2:  𝑈𝑈2(𝑒𝑒, 𝑡𝑡) = 𝑆𝑆−1 �𝑢𝑢𝛼𝛼𝑆𝑆�𝐿𝐿�𝑈𝑈1(𝑒𝑒, 𝑡𝑡)� + 𝐻𝐻1(𝑈𝑈)��,                                                                

(4.9) 

𝑝𝑝3:  𝑈𝑈3(𝑒𝑒, 𝑡𝑡) = 𝑆𝑆−1 �𝑢𝑢𝛼𝛼𝑆𝑆�𝐿𝐿�𝑈𝑈2(𝑒𝑒, 𝑡𝑡)� + 𝐻𝐻2(𝑈𝑈)��, 

𝑝𝑝𝑛𝑛 :  𝑈𝑈𝑛𝑛(𝑒𝑒, 𝑡𝑡) = 𝑆𝑆−1 �𝑢𝑢𝛼𝛼𝑆𝑆�𝐿𝐿�𝑈𝑈𝑛𝑛−1(𝑒𝑒, 𝑡𝑡)� + 𝐻𝐻𝑛𝑛−1(𝑈𝑈)��, 

 Finally, we approximate the analytical solution 𝑈𝑈(𝑒𝑒, 𝑡𝑡) by the 
truncated series:   

                                                                                                                       
(4.10) 

 

𝑈𝑈(𝑒𝑒, 𝑡𝑡) = lim
𝑁𝑁→∞

�𝑈𝑈𝑛𝑛

𝑁𝑁

𝑛𝑛=0

(𝑒𝑒, 𝑡𝑡) 

The above series solution generally converges very rapidly 

[34]. 

IV.II  Basic Idea of HDM [27-28] 
The method first step here is to transform the fractional  partial 

differential equation to the fractional partial integral equation 

by applying the inverse operator  𝐷𝐷𝑡𝑡𝛼𝛼of on both sides of 

equation (4.1) to obtain:                                                                 

(4.11) 

𝑈𝑈(𝑒𝑒, 𝑡𝑡) = �
𝑔𝑔𝑗𝑗 (𝑒𝑒)

𝛤𝛤(𝛼𝛼 − 𝑗𝑗 + 1)

𝑛𝑛−1

𝑗𝑗=1

𝑡𝑡𝑗𝑗

+
1

𝛤𝛤(𝛼𝛼)
�(𝑡𝑡 − 𝜏𝜏)𝛼𝛼−1

𝑡𝑡

0

[𝐿𝐿(𝑈𝑈(𝑒𝑒, 𝜏𝜏) ) +𝑁𝑁(𝑈𝑈(𝑒𝑒, 𝜏𝜏) )

+ 𝑓𝑓(𝑒𝑒, 𝜏𝜏)]𝑑𝑑𝜏𝜏 

Or in general by putting                                                          
 

�
𝑓𝑓𝑗𝑗 (𝑒𝑒)

𝛤𝛤(𝛼𝛼 − 𝑗𝑗 + 1)

𝑛𝑛−1

𝑗𝑗=1

𝑡𝑡𝛼𝛼−𝑗𝑗 = 𝑓𝑓(𝑒𝑒, 𝑡𝑡)  𝑜𝑜𝑜𝑜  𝑓𝑓(𝑒𝑒, 𝑡𝑡)

= �
𝑔𝑔𝑗𝑗 (𝑒𝑒)

𝛤𝛤(𝛼𝛼 − 𝑗𝑗 + 1)

𝑛𝑛−1

𝑗𝑗=1

𝑡𝑡𝑗𝑗  

We obtain:                                                                                                     

(4.12)                

𝑈𝑈(𝑒𝑒, 𝑡𝑡) = 𝑇𝑇(𝑒𝑒, 𝑡𝑡)

+
1

𝛤𝛤(𝛼𝛼)�
(𝑡𝑡 − 𝜏𝜏)𝛼𝛼−1

𝑡𝑡

0

[𝐿𝐿(𝑈𝑈(𝑒𝑒, 𝜏𝜏) )

+ 𝑁𝑁(𝑈𝑈(𝑒𝑒, 𝜏𝜏) ) + 𝑓𝑓(𝑒𝑒, 𝜏𝜏)]𝑑𝑑𝜏𝜏 

For the homotopy decomposition method, we assume the 

solutions can be written as a power series in 𝑝𝑝                                                                    

                                        
𝑈𝑈(𝑒𝑒, 𝑡𝑡, 𝑝𝑝) = ∑ 𝑝𝑝𝑛𝑛𝑈𝑈𝑛𝑛(𝑒𝑒, 𝑡𝑡)  ∞

𝑛𝑛=0                            (4.13) 
 
𝑈𝑈(𝑒𝑒, 𝑡𝑡) = 𝑙𝑙𝑖𝑖𝑚𝑚𝑝𝑝→1 𝑈𝑈(𝑒𝑒, 𝑡𝑡,𝑝𝑝)                          (4.14) 

and the nonlinear term can be decomposed as                                                                      

𝑁𝑁𝑈𝑈(𝑒𝑒, 𝑡𝑡) = ∑ 𝑝𝑝𝑛𝑛ℋ𝑛𝑛 (𝑈𝑈)∞
𝑛𝑛=0                                 (4.15) 
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where 𝑝𝑝 𝜖𝜖 (0, 1] is an embedding parameter. ℋ𝑛𝑛(𝑈𝑈) [24] is 

the He’s polynomials that can be  generated by                                                                                      

(4.16) 

ℋ𝑛𝑛 (𝑈𝑈0,⋯⋯⋯ ,𝑈𝑈𝑛𝑛)

=
1
𝑛𝑛!

𝑎𝑎𝑛𝑛

𝑎𝑎𝑝𝑝𝑛𝑛
�𝑁𝑁 ��𝑝𝑝𝑗𝑗𝑈𝑈𝑗𝑗 (𝑒𝑒, 𝑡𝑡)

∞

𝑗𝑗=0

�� ,𝑛𝑛

= 0,1,2⋯⋯⋯ 

Now gracefully using Abel integral with the above in (4.12) 

we achieved                                                                       (4.17)       

∑ 𝑝𝑝𝑛𝑛𝑈𝑈𝑛𝑛(𝑒𝑒, 𝑡𝑡)∞
𝑛𝑛=0 − 𝑇𝑇(𝑒𝑒, 𝑡𝑡) = 𝑝𝑝

𝛤𝛤(𝛼𝛼)
∫ (𝑡𝑡 − 𝜏𝜏)𝛼𝛼−1[𝑓𝑓(𝑒𝑒, 𝜏𝜏) +𝑡𝑡

0

𝐿𝐿(∑ 𝑝𝑝𝑛𝑛𝑈𝑈𝑛𝑛(𝑒𝑒, 𝜏𝜏)∞
𝑛𝑛=0 ) + 𝑁𝑁(∑ 𝑝𝑝𝑛𝑛𝑈𝑈𝑛𝑛(𝑒𝑒, 𝜏𝜏)∞

𝑛𝑛=0 )]𝑑𝑑𝜏𝜏 

 

 Comparing the terms of same powers of 𝑝𝑝 gives solutions of 

various orders with the first term: 

                               𝑈𝑈0(𝑒𝑒, 𝑡𝑡) = 𝑇𝑇(𝑒𝑒, 𝑡𝑡)                              (4.18)   

It is worth noting that, the term 𝑇𝑇(𝑒𝑒, 𝑡𝑡) is the Taylor series of 

the exact solution of equation (4.1) of order 𝑛𝑛 − 1. 
 

V. APPLICATIONS 
In this section we solve some popular nonlinear partial 

differential equation with both methods.  

Example 1:   

Let consider the following one-dimensional fractional heat-

like problem:                                                                       (5.1) 

𝐷𝐷𝑡𝑡𝛼𝛼𝑢𝑢(𝑒𝑒, 𝑡𝑡) =
1
2
𝑒𝑒2𝑢𝑢𝑒𝑒𝑒𝑒 (𝑒𝑒, 𝑡𝑡), 0 < 𝑒𝑒 < 1, 0 < 𝛼𝛼 ≤ 1, 𝑡𝑡 > 0 

Subject to the boundary condition: 

𝑢𝑢(0, 𝑡𝑡) = 0, 𝑢𝑢(1, 𝑡𝑡) = exp[𝑡𝑡] 

and initial condition 𝑢𝑢(𝑒𝑒, 0) = 𝑒𝑒2 

Example 2 
Consider the following time-fractional derivative in 
𝑒𝑒,𝑦𝑦 −plane as                                                                      (5.2) 

𝐷𝐷𝑡𝑡𝛼𝛼𝑢𝑢(𝑒𝑒,𝑦𝑦, 𝑡𝑡) =
1
2
∇2𝑢𝑢(𝑒𝑒,𝑦𝑦, 𝑡𝑡), 1 < 𝛼𝛼 ≤ 2, 𝑒𝑒,𝑦𝑦 ∈ ℝ, 𝑡𝑡 > 0 

subjected to the initial conditions                                                                         
(5.3) 

𝑢𝑢(𝑒𝑒,𝑦𝑦, 0) = sin(𝑒𝑒 + 𝑦𝑦) , 𝑢𝑢𝑡𝑡(𝑒𝑒,𝑦𝑦, 0) = −cos(𝑒𝑒 + 𝑦𝑦) 
Example 3 
Consider the following nonlinear time-fractional gas dynamics 
equations [Kilicman] 
    𝐷𝐷𝑡𝑡𝛼𝛼𝑈𝑈 + 1

2
(𝑈𝑈2)𝑒𝑒 − 𝑈𝑈(1 − 𝑈𝑈) = 0, 0 < 𝛼𝛼 ≤ 1,                (5.4) 

with the initial conditions 

         𝑈𝑈(𝑒𝑒, 0) = exp[−𝑒𝑒]                                                   (5.5) 
Example 4: Consider the following three-dimensional 

fractional heat-like equation  

𝑎𝑎𝑡𝑡𝛼𝛼𝑢𝑢(𝑒𝑒,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝑒𝑒4𝑦𝑦4𝑧𝑧4 +
1

36
�𝑒𝑒2𝑢𝑢𝑒𝑒𝑒𝑒 + 𝑦𝑦2𝑢𝑢𝑦𝑦𝑦𝑦 + 𝑧𝑧2𝑢𝑢𝑧𝑧𝑧𝑧 �, 

0 < 𝑒𝑒,𝑦𝑦, 𝑧𝑧 < 1, 0 < 𝛼𝛼 ≤ 1                                                 (5.6) 

Subject to the initial condition: 

                    𝑢𝑢(𝑒𝑒,𝑦𝑦, 𝑧𝑧, 0) = 0                                              (5.7) 

V.I. Solution via HPSTM 

Example1:  Apply the steps involved in HPSTM as presented 

in section IV.I to equation (5.1) we obtain the following: 

𝑝𝑝0:  𝑢𝑢0(𝑒𝑒, 𝑡𝑡) = 𝑒𝑒2,                                                               (5.8) 

𝑝𝑝1: 𝑢𝑢1(𝑒𝑒, 𝑡𝑡) = 𝑆𝑆−1 �𝑢𝑢𝛼𝛼𝑆𝑆 �1
2
𝑒𝑒2(𝑢𝑢0)𝑒𝑒𝑒𝑒 �� = 𝑒𝑒2𝑡𝑡𝛼𝛼

Γ(𝛼𝛼+1)
, 

𝑝𝑝2: 𝑢𝑢2(𝑒𝑒, 𝑡𝑡) = 𝑆𝑆−1 �𝑢𝑢𝛼𝛼𝑆𝑆 �1
2
𝑒𝑒2(𝑢𝑢1)𝑒𝑒𝑒𝑒 �� = 𝑒𝑒2𝑡𝑡2𝛼𝛼

Γ(2𝛼𝛼+1)
,             (5.9)                                      

𝑝𝑝3: 𝑢𝑢3(𝑒𝑒, 𝑡𝑡) = 𝑆𝑆−1 �𝑢𝑢𝛼𝛼𝑆𝑆 �1
2
𝑒𝑒2(𝑢𝑢2)𝑒𝑒𝑒𝑒 �� = 𝑒𝑒2𝑡𝑡3𝛼𝛼

Γ(3𝛼𝛼+1)
,                                              

𝑝𝑝𝑛𝑛 : 𝑢𝑢𝑛𝑛(𝑒𝑒, 𝑡𝑡) = 𝑆𝑆−1 �𝑢𝑢𝛼𝛼𝑆𝑆 �1
2
𝑒𝑒2(𝑢𝑢𝑛𝑛)𝑒𝑒𝑒𝑒 �� = 𝑒𝑒2𝑡𝑡𝑛𝑛𝛼𝛼

Γ(𝑛𝑛𝛼𝛼+1)
,          (5.10) 

Therefore the series solution is given as:                                                              

  (5.11) 

𝑢𝑢(𝑒𝑒, 𝑡𝑡) = 𝑒𝑒2 �1 +
𝑡𝑡𝛼𝛼

Γ(𝛼𝛼 + 1)
+

𝑡𝑡2𝛼𝛼

Γ(2𝛼𝛼 + 1)
+

𝑡𝑡3𝛼𝛼

Γ(3𝛼𝛼 + 1)
+ ⋯

+
𝑡𝑡𝑛𝑛𝛼𝛼

Γ(3𝛼𝛼 + 1)
+ ⋯� 

This is equivalent to the exact solution in closed form:                                           

𝑢𝑢(𝑒𝑒, 𝑡𝑡) = 𝑒𝑒2𝐸𝐸1,𝛼𝛼(𝑡𝑡𝛼𝛼)                                                        (5.12) 

where  𝐸𝐸1,𝛼𝛼() is the Mittag-Leffler function. 

Example 2: Applying the steps involved in HPSTM as 

presented in section 4.1 to equation (5.2) we obtain: 

𝑝𝑝0:  𝑢𝑢0(𝑒𝑒,𝑦𝑦, 𝑡𝑡) = sin(𝑒𝑒 + 𝑦𝑦) − cos(𝑒𝑒 + 𝑦𝑦)𝑡𝑡, 

𝑝𝑝1: 𝑢𝑢1(𝑒𝑒, 𝑡𝑡) = 𝑆𝑆−1 �𝑢𝑢𝛼𝛼𝑆𝑆 �1
2
𝑒𝑒2�(𝑢𝑢0)𝑒𝑒𝑒𝑒 + (𝑢𝑢0)𝑦𝑦𝑦𝑦 ��� =

− sin(𝑒𝑒 + 𝑦𝑦) 𝑡𝑡2

2
+ cos(𝑒𝑒 + 𝑦𝑦) 𝑡𝑡

3

3!
, 

𝑝𝑝2: 𝑢𝑢2(𝑒𝑒, 𝑡𝑡) = 𝑆𝑆−1 �𝑢𝑢𝛼𝛼𝑆𝑆 �
1
2
𝑒𝑒2�(𝑢𝑢1)𝑒𝑒𝑒𝑒 + (𝑢𝑢1)𝑦𝑦𝑦𝑦 ���

= sin(𝑒𝑒 + 𝑦𝑦) �−
𝑡𝑡2

2!
+
𝑡𝑡4

4!
+

𝑡𝑡4−𝛼𝛼

Γ(5 − 𝛼𝛼)�

+ cos(𝑒𝑒 + 𝑦𝑦) �−
𝑡𝑡3

3!
+
𝑡𝑡5

5!
+

𝑡𝑡5−𝛼𝛼

Γ(6 − 𝛼𝛼)� 

𝑝𝑝3: 𝑢𝑢3(𝑒𝑒, 𝑡𝑡) = 𝑆𝑆−1 �𝑢𝑢𝛼𝛼𝑆𝑆 �1
2
𝑒𝑒2�(𝑢𝑢2)𝑒𝑒𝑒𝑒 + (𝑢𝑢2)𝑦𝑦𝑦𝑦 ��� =

sin(𝑒𝑒 + 𝑦𝑦) �− 𝑡𝑡2

2!
+ 𝑡𝑡4

4!
+ 𝑡𝑡6

6!
+ 2𝑡𝑡4−𝛼𝛼

Γ(5−𝛼𝛼)
− 2𝑡𝑡6−𝛼𝛼

Γ(7−𝛼𝛼)
−
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4𝛼𝛼−2√𝜋𝜋𝑡𝑡6−2𝛼𝛼

(6−2𝛼𝛼)(5−2𝛼𝛼)Γ(3−𝛼𝛼)Γ(2.5−𝛼𝛼)
� + cos(𝑒𝑒 + 𝑦𝑦) �𝑡𝑡

3

3!
− 𝑡𝑡5

5!
+ 𝑡𝑡7

7!
+

2𝑡𝑡7−𝛼𝛼

Γ(7−𝛼𝛼)
+ 2𝑡𝑡7−2𝛼𝛼

Γ(8−2𝛼𝛼)
�, 

Therefore the series solution is given as:                                                              

(5.13) 

𝑢𝑢(𝑒𝑒,𝑦𝑦, 𝑡𝑡) = sin(𝑒𝑒 + 𝑦𝑦) �1 −
3𝑡𝑡2

2!
+
𝑡𝑡4

8
+
𝑡𝑡6

6!
+

3𝑡𝑡4−𝛼𝛼

Γ(5 − 𝛼𝛼)

−
2𝑡𝑡6−𝛼𝛼

Γ(7 − 𝛼𝛼)

−
4𝛼𝛼−2√𝜋𝜋𝑡𝑡6−2𝛼𝛼

(6 − 2𝛼𝛼)(5 − 2𝛼𝛼)Γ(3 − 𝛼𝛼)Γ(2.5 − 𝛼𝛼)
�

+ cos(𝑒𝑒 + 𝑦𝑦) �−𝑡𝑡 +
𝑡𝑡3

3!
−
𝑡𝑡5

5!
+
𝑡𝑡7

7!

+
3𝑡𝑡7−𝛼𝛼

Γ(7 − 𝛼𝛼) +
𝑡𝑡7−2𝛼𝛼

Γ(8 − 2𝛼𝛼)
� + ⋯ 

It is important to point out that if 𝛼𝛼 = 2 the above solution 
takes the form:                                                                   (5.14) 
 

𝑢𝑢𝑁𝑁=4(𝑒𝑒,𝑦𝑦, 𝑡𝑡) = sin(𝑒𝑒 + 𝑦𝑦) �1 −
𝑡𝑡2

2!
+
𝑡𝑡4

4!
−
𝑡𝑡6

6!
� − cos(𝑒𝑒

+ 𝑦𝑦) �𝑡𝑡 −
𝑡𝑡3

3!
+
𝑡𝑡5

5!
−
𝑡𝑡7

7!
� 

 
which is the first four terms of the series expansion of the 
exact solution 𝑢𝑢(𝑒𝑒,𝑦𝑦, 𝑡𝑡) = sin(𝑒𝑒 + 𝑦𝑦 − 𝑡𝑡) 
 
Example 3: Apply the steps involved in HPSTM as presented 

in section 4.1 to equation (5.4) Kilicman et al [ 34] obtained 

the following: 

𝑝𝑝0:  𝑢𝑢0(𝑒𝑒, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑝𝑝(−𝑒𝑒), 

𝑝𝑝1: 𝑢𝑢1(𝑒𝑒, 𝑡𝑡) = 𝑆𝑆−1 �𝑢𝑢𝛼𝛼𝑆𝑆 �1
2
𝑒𝑒2(𝑢𝑢0)𝑒𝑒𝑒𝑒 �� = 𝑒𝑒𝑒𝑒𝑝𝑝 (−𝑒𝑒)𝑡𝑡𝛼𝛼

Γ(𝛼𝛼+1)
, 

𝑝𝑝2: 𝑢𝑢2(𝑒𝑒, 𝑡𝑡) = 𝑆𝑆−1 �𝑢𝑢𝛼𝛼𝑆𝑆 �1
2
𝑒𝑒2(𝑢𝑢1)𝑒𝑒𝑒𝑒 �� = 𝑒𝑒𝑒𝑒𝑝𝑝 (−𝑒𝑒)𝑡𝑡2𝛼𝛼

Γ(2𝛼𝛼+1)
, 

𝑝𝑝3: 𝑢𝑢3(𝑒𝑒, 𝑡𝑡) = 𝑆𝑆−1 �𝑢𝑢𝛼𝛼𝑆𝑆 �1
2
𝑒𝑒2(𝑢𝑢2)𝑒𝑒𝑒𝑒 �� = 𝑒𝑒𝑒𝑒𝑝𝑝 (−𝑒𝑒)𝑡𝑡3𝛼𝛼

Γ(3𝛼𝛼+1)
,                                          

(5.15) 

𝑝𝑝𝑛𝑛 : 𝑢𝑢𝑛𝑛(𝑒𝑒, 𝑡𝑡) = 𝑆𝑆−1 �𝑢𝑢𝛼𝛼𝑆𝑆 �1
2
𝑒𝑒2(𝑢𝑢𝑛𝑛)𝑒𝑒𝑒𝑒 �� = 𝑒𝑒𝑒𝑒𝑝𝑝 (−𝑒𝑒)𝑡𝑡𝑛𝑛𝛼𝛼

Γ(𝑛𝑛𝛼𝛼+1)
, 

Therefore the series solution is given as:                                                              

(5.16) 

𝑢𝑢(𝑒𝑒, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑝𝑝(−𝑒𝑒) �1 +
𝑡𝑡𝛼𝛼

Γ(𝛼𝛼 + 1)
+

𝑡𝑡2𝛼𝛼

Γ(2𝛼𝛼 + 1)
+

𝑡𝑡3𝛼𝛼

Γ(3𝛼𝛼 + 1)

+ ⋯+
𝑡𝑡𝑛𝑛𝛼𝛼

Γ(3𝛼𝛼 + 1)
+ ⋯� 

Example 4: Applying the steps involved in HPSTM as 

presented in section 4.1 to equation (5.2) we obtain: 

𝑝𝑝0:  𝑢𝑢0(𝑒𝑒, 𝑡𝑡) = 𝑒𝑒4𝑦𝑦4𝑧𝑧4 

𝑝𝑝1: 𝑢𝑢1(𝑒𝑒, 𝑡𝑡) = 𝑆𝑆−1 �𝑢𝑢𝛼𝛼𝑆𝑆 �
1

36
�𝑒𝑒2(𝑢𝑢0)𝑒𝑒𝑒𝑒 + 𝑦𝑦2(𝑢𝑢0)𝑦𝑦𝑦𝑦

+ 𝑧𝑧2(𝑢𝑢0)𝑧𝑧𝑧𝑧 ��� =
𝑡𝑡𝛼𝛼𝑒𝑒4𝑦𝑦4𝑧𝑧4

Γ(𝛼𝛼 + 1)  

𝑝𝑝2: 𝑢𝑢2(𝑒𝑒, 𝑡𝑡) = 𝑆𝑆−1 �𝑢𝑢𝛼𝛼𝑆𝑆 1
36
�𝑒𝑒2(𝑢𝑢1)𝑒𝑒𝑒𝑒 + 𝑦𝑦2(𝑢𝑢1)𝑦𝑦𝑦𝑦 +

𝑧𝑧2(𝑢𝑢1)𝑧𝑧𝑧𝑧 �� = 𝑡𝑡2𝛼𝛼𝑒𝑒4𝑦𝑦4𝑧𝑧4

Γ(2𝛼𝛼+1)
 

𝑝𝑝3: 𝑢𝑢3(𝑒𝑒, 𝑡𝑡) = 𝑆𝑆−1 �𝑢𝑢𝛼𝛼𝑆𝑆 � 1
36
�𝑒𝑒2(𝑢𝑢2)𝑒𝑒𝑒𝑒 + 𝑦𝑦2(𝑢𝑢2)𝑦𝑦𝑦𝑦 +

𝑧𝑧2(𝑢𝑢2)𝑧𝑧𝑧𝑧 ��� = 𝑡𝑡3𝛼𝛼𝑒𝑒4𝑦𝑦4𝑧𝑧4

Γ(3𝛼𝛼+1)
         

                                                                                                                             

(5.17) 

𝑝𝑝𝑛𝑛 : 𝑢𝑢𝑛𝑛(𝑒𝑒, 𝑡𝑡) = 𝑆𝑆−1 �𝑢𝑢𝛼𝛼𝑆𝑆 �
1

36
�𝑒𝑒2(𝑢𝑢𝑛𝑛−1)𝑒𝑒𝑒𝑒 + 𝑦𝑦2(𝑢𝑢𝑛𝑛−1)𝑦𝑦𝑦𝑦

+ 𝑧𝑧2(𝑢𝑢𝑛𝑛−1)𝑧𝑧𝑧𝑧 ��� =
𝑡𝑡𝑛𝑛𝛼𝛼 𝑒𝑒4𝑦𝑦4𝑧𝑧4

Γ(𝑛𝑛𝛼𝛼 + 1)  

Therefore the approximate solution of equation for the first 𝑛𝑛 
is given below as:   

(5.18) 
                                                                                                                           
𝑢𝑢𝑁𝑁(𝑒𝑒,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = ∑ 𝑡𝑡𝑛𝑛𝛼𝛼 𝑒𝑒4𝑦𝑦4𝑧𝑧4

Γ(𝑛𝑛𝛼𝛼+1)
𝑁𝑁
𝑛𝑛=1 .                                                                                         

 
 
 

V.II. Solution via HDM 

Example 1: Apply the steps involved in HDM as presented in 
section 4.2 to equation (5.1) we obtain the following                                                                 

(5.19) 

�𝑝𝑝𝑛𝑛u𝑛𝑛(𝑒𝑒, 𝑡𝑡)
∞

𝑛𝑛=0

− 𝑒𝑒2

=
1

Γ(𝛼𝛼)
�(𝑡𝑡
𝑡𝑡

0

− 𝜏𝜏)𝛼𝛼−1 �𝑒𝑒2 �𝑝𝑝𝑛𝑛
𝑎𝑎2𝑢𝑢𝑛𝑛(𝑒𝑒, 𝜏𝜏)

𝑎𝑎𝑒𝑒2

∞

𝑛𝑛=0

� 𝑑𝑑𝜏𝜏 

Comparing the terms of the same powers of p we obtain:                                   

𝑢𝑢0(𝑒𝑒, 𝑡𝑡) = 𝑒𝑒2 

𝑢𝑢1(𝑒𝑒, 𝑡𝑡) =
1

Γ(𝛼𝛼)
�(𝑡𝑡 − 𝜏𝜏)𝛼𝛼−1 𝑒𝑒

2𝑎𝑎2𝑢𝑢0(𝑒𝑒, 𝜏𝜏)
𝑎𝑎𝑒𝑒2 𝑑𝑑𝜏𝜏 =

𝑡𝑡

0

𝑒𝑒2𝑡𝑡𝛼𝛼

Γ(𝛼𝛼 + 1)
 

𝑢𝑢2(𝑒𝑒, 𝑡𝑡) =
1

Γ(𝛼𝛼)
�(𝑡𝑡 − 𝜏𝜏)𝛼𝛼−1 𝑒𝑒

2𝑎𝑎2𝑢𝑢1(𝑒𝑒, 𝜏𝜏)
𝑎𝑎𝑒𝑒2 𝑑𝑑𝜏𝜏 =

𝑒𝑒2𝑡𝑡2𝛼𝛼

Γ(2𝛼𝛼 + 1)

𝑡𝑡

0
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𝑢𝑢3(𝑒𝑒, 𝑡𝑡) =
1

Γ(𝛼𝛼)
�(𝑡𝑡 − 𝜏𝜏)𝛼𝛼−1 𝑒𝑒

2𝑎𝑎2𝑢𝑢2(𝑒𝑒, 𝜏𝜏)
𝑎𝑎𝑒𝑒2 𝑑𝑑𝜏𝜏 =

𝑒𝑒2𝑡𝑡3𝛼𝛼

Γ(2𝛼𝛼 + 1)

𝑡𝑡

0

 

𝑢𝑢𝑛𝑛(𝑒𝑒, 𝑡𝑡) =
1

Γ(𝛼𝛼)
�(𝑡𝑡 − 𝜏𝜏)𝛼𝛼−1 𝑒𝑒

2𝑎𝑎2𝑢𝑢𝑛𝑛−1(𝑒𝑒, 𝜏𝜏)
𝑎𝑎𝑒𝑒2 𝑑𝑑𝜏𝜏 =

𝑒𝑒2𝑡𝑡𝑛𝑛𝛼𝛼

Γ(𝑛𝑛𝛼𝛼 + 1)

𝑡𝑡

0

 

The asymptotic solution is given by                                                                                      

𝑢𝑢𝑁𝑁(𝑒𝑒, 𝑡𝑡) = 𝑒𝑒2 �
𝑡𝑡𝛼𝛼

Γ(𝛼𝛼 + 1)
+

𝑡𝑡2𝛼𝛼

Γ(2𝛼𝛼 + 1) +
𝑡𝑡3𝛼𝛼

Γ(3𝛼𝛼 + 1)
+ ⋯

+
𝑡𝑡𝑁𝑁𝛼𝛼

Γ(𝑁𝑁𝛼𝛼 + 1)
+ ⋯� 

lim𝑁𝑁→∞ 𝑢𝑢𝑁𝑁(𝑒𝑒, 𝑡𝑡,𝛼𝛼) = 𝑢𝑢(𝑒𝑒, 𝑡𝑡,𝛼𝛼)                                 (5.20) 
lim
𝛼𝛼→1
𝑁𝑁→∞

𝑢𝑢𝑁𝑁(𝑒𝑒, 𝑡𝑡,𝛼𝛼) = 𝑒𝑒2exp(𝑡𝑡) 

This is the exact solution of (5.1) when 𝛼𝛼 = 1. 
 
Example 2 
Following the discussion presented earlier, applying the initial 
conditions and comparing the terms of the same power of p, 
integrating, we obtain the following solutions: 
𝑢𝑢0(𝑒𝑒, 𝑡𝑡) = sin(𝑒𝑒 + 𝑦𝑦) − cos(𝑒𝑒 + 𝑦𝑦)𝑡𝑡 

𝑢𝑢1(𝑒𝑒, 𝑡𝑡) = − sin(𝑒𝑒 + 𝑦𝑦)
𝑡𝑡2

2
+ cos(𝑒𝑒 + 𝑦𝑦)

𝑡𝑡3

3!
 

𝑢𝑢2(𝑒𝑒, 𝑡𝑡) = sin(𝑒𝑒 + 𝑦𝑦) �− 𝑡𝑡2

2!
+ 𝑡𝑡4

4!
+ 𝑡𝑡4−𝛼𝛼

Γ(5−𝛼𝛼)
� + cos(𝑒𝑒 +

𝑦𝑦) �− 𝑡𝑡3

3!
+ 𝑡𝑡5

5!
+ 𝑡𝑡5−𝛼𝛼

Γ(6−𝛼𝛼)
�                                                                                                                   

(5.21) 

𝑢𝑢3(𝑒𝑒, 𝑡𝑡) = sin(𝑒𝑒 + 𝑦𝑦) �−
𝑡𝑡2

2!
+
𝑡𝑡4

4!
+
𝑡𝑡6

6!
+

2𝑡𝑡4−𝛼𝛼

Γ(5 − 𝛼𝛼)

−
2𝑡𝑡6−𝛼𝛼

Γ(7 − 𝛼𝛼)

−
4𝛼𝛼−2√𝜋𝜋𝑡𝑡6−2𝛼𝛼

(6 − 2𝛼𝛼)(5 − 2𝛼𝛼)Γ(3 − 𝛼𝛼)Γ(2.5 − 𝛼𝛼)
�

+ cos(𝑒𝑒 + 𝑦𝑦) �
𝑡𝑡3

3!
−
𝑡𝑡5

5!
+
𝑡𝑡7

7!
+

2𝑡𝑡7−𝛼𝛼

Γ(7 − 𝛼𝛼)

+
2𝑡𝑡7−2𝛼𝛼

Γ(8 − 2𝛼𝛼)
� 

Using the package Mathematica, in the same manner one can 
obtain the rest of the components. But for four terms were 
computed and the asymptotic solution is given by:   
                                                                                                                             

(5. 22) 

𝑢𝑢(𝑒𝑒,𝑦𝑦, 𝑡𝑡) = sin(𝑒𝑒 + 𝑦𝑦) �1 −
3𝑡𝑡2

2!
+
𝑡𝑡4

8
+
𝑡𝑡6

6!
+

3𝑡𝑡4−𝛼𝛼

Γ(5 − 𝛼𝛼)

−
2𝑡𝑡6−𝛼𝛼

Γ(7 − 𝛼𝛼)

−
4𝛼𝛼−2√𝜋𝜋𝑡𝑡6−2𝛼𝛼

(6 − 2𝛼𝛼)(5 − 2𝛼𝛼)Γ(3 − 𝛼𝛼)Γ(2.5 − 𝛼𝛼)
�

+ cos(𝑒𝑒 + 𝑦𝑦) �−𝑡𝑡 +
𝑡𝑡3

3!
−
𝑡𝑡5

5!
+
𝑡𝑡7

7!

+
3𝑡𝑡7−𝛼𝛼

Γ(7 − 𝛼𝛼) +
𝑡𝑡7−2𝛼𝛼

Γ(8 − 2𝛼𝛼)
� + ⋯ 

It is important to point out that if 𝛼𝛼 = 2 the above solution 
takes the form: 
𝑢𝑢𝑁𝑁=4(𝑒𝑒,𝑦𝑦, 𝑡𝑡) = sin(𝑒𝑒 + 𝑦𝑦) �1 − 𝑡𝑡2

2!
+ 𝑡𝑡4

4!
− 𝑡𝑡6

6!
� − cos(𝑒𝑒 +

𝑦𝑦) �𝑡𝑡 − 𝑡𝑡3

3!
+ 𝑡𝑡5

5!
− 𝑡𝑡7

7!
�  

Which are the first four terms of the series expansion of the 
exact solution 𝑢𝑢(𝑒𝑒,𝑦𝑦, 𝑡𝑡) = sin(𝑒𝑒 + 𝑦𝑦 − 𝑡𝑡) 
 
Example 3:  
𝑝𝑝0:  𝑢𝑢0(𝑒𝑒, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑝𝑝(−𝑒𝑒), 

𝑝𝑝1: 𝑢𝑢1(𝑒𝑒, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑝𝑝 (−𝑒𝑒)
Γ(𝛼𝛼+1)

𝑡𝑡𝛼𝛼 , 

𝑝𝑝2: 𝑢𝑢2(𝑒𝑒, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑝𝑝 (−𝑒𝑒)
Γ(2𝛼𝛼+1)

𝑡𝑡2𝛼𝛼 , 

𝑝𝑝3: 𝑢𝑢3(𝑒𝑒, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑝𝑝 (−𝑒𝑒)
Γ(3𝛼𝛼+1)

𝑡𝑡3𝛼𝛼 ,                                                                                    

(5.23) 

⋮. 

𝑝𝑝𝑛𝑛 : 𝑢𝑢𝑛𝑛(𝑒𝑒, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑝𝑝 (−𝑒𝑒)
Γ(𝑛𝑛𝛼𝛼+1)

𝑡𝑡𝑛𝑛𝛼𝛼 , 

Therefore the series solution is given as:                                                                             

(5.24) 

𝑢𝑢(𝑒𝑒, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑝𝑝(−𝑒𝑒) �1 +
𝑡𝑡𝛼𝛼

Γ(𝛼𝛼 + 1)
+

𝑡𝑡2𝛼𝛼

Γ(2𝛼𝛼 + 1)
+

𝑡𝑡3𝛼𝛼

Γ(3𝛼𝛼 + 1)

+ ⋯+
𝑡𝑡𝑛𝑛𝛼𝛼

Γ(3𝛼𝛼 + 1)
+ ⋯� 

Example 4: Following carefully the steps involved in the 

HDM, we arrive at the following equations       

∑ 𝑝𝑝𝑛𝑛𝑢𝑢𝑛𝑛(𝑒𝑒,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝑝𝑝
Γ(𝛼𝛼)

∞
𝑛𝑛=0 ∫ (𝑡𝑡 − 𝜏𝜏)𝛼𝛼−1 �𝑒𝑒4𝑦𝑦4𝑧𝑧4 +𝑡𝑡

0

1
36
�𝑒𝑒2(∑ 𝑝𝑝𝑛𝑛𝑢𝑢𝑛𝑛(𝑒𝑒,𝑦𝑦, 𝑧𝑧, 𝑡𝑡)∞

𝑛𝑛=0 )𝑒𝑒𝑒𝑒 +

𝑦𝑦2(∑ 𝑝𝑝𝑛𝑛𝑢𝑢𝑛𝑛(𝑒𝑒,𝑦𝑦, 𝑧𝑧, 𝑡𝑡)∞
𝑛𝑛=0 )𝑦𝑦𝑦𝑦 +

𝑧𝑧2(∑ 𝑝𝑝𝑛𝑛𝑢𝑢𝑛𝑛(𝑒𝑒,𝑦𝑦, 𝑧𝑧, 𝑡𝑡)∞
𝑛𝑛=0 )𝑧𝑧𝑧𝑧 �� 𝑑𝑑𝜏𝜏                                                                                                                              

(5.25) 

Now comparing the terms of the same power of 𝑝𝑝 yields: 

𝑝𝑝0:  𝑢𝑢0(𝑒𝑒,𝑦𝑦, 𝑧𝑧, 𝑡𝑡)                                                                (5.26) 

𝑝𝑝1:  𝑢𝑢1(𝑒𝑒,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) =
1

Γ(𝛼𝛼)�
(𝑡𝑡 − 𝜏𝜏)𝛼𝛼−1𝑒𝑒4𝑦𝑦4𝑧𝑧4𝑑𝑑𝜏𝜏
𝑡𝑡

0
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𝑝𝑝𝑛𝑛 :𝑢𝑢𝑛𝑛(𝑒𝑒,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) =
1

Γ(𝛼𝛼)�
(𝑡𝑡 − 𝜏𝜏)𝛼𝛼−1 �

1
36

�𝑒𝑒2(𝑢𝑢𝑛𝑛−1)𝑒𝑒𝑒𝑒

𝑡𝑡

0

+ 𝑦𝑦2(𝑢𝑢𝑛𝑛−1)𝑦𝑦𝑦𝑦

+ 𝑧𝑧2(𝑢𝑢𝑛𝑛−1)𝑧𝑧𝑧𝑧 �� 𝑑𝑑𝜏𝜏, 𝑢𝑢𝑛𝑛(𝑒𝑒, 𝑦𝑦, 𝑧𝑧, 0) = 0, 𝑛𝑛 ≥ 2 

Thus the following components are obtained as results of the 
above integrals                   
 
𝑢𝑢0(𝑒𝑒,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 0 
 

𝑢𝑢1(𝑒𝑒,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) =
𝑡𝑡𝛼𝛼𝑒𝑒4𝑦𝑦4𝑧𝑧4

Γ(𝛼𝛼 + 1)  

 

𝑢𝑢2(𝑒𝑒,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) =
𝑡𝑡2𝛼𝛼𝑒𝑒4𝑦𝑦4𝑧𝑧4

Γ(2𝛼𝛼 + 1)  

 

𝑢𝑢3(𝑒𝑒,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) =
𝑡𝑡3𝛼𝛼𝑒𝑒4𝑦𝑦4𝑧𝑧4

Γ(3𝛼𝛼 + 1)  

 
                      ⋮  
𝑢𝑢𝑛𝑛(𝑒𝑒,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝑡𝑡𝑛𝑛𝛼𝛼 𝑒𝑒4𝑦𝑦4𝑧𝑧4

Γ(𝑛𝑛𝛼𝛼+1)
                                                  (5.27) 

Therefore the approximate solution of equation for the first 𝑛𝑛 
is given below as:    
 

𝑢𝑢𝑁𝑁(𝑒𝑒,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = �
𝑡𝑡𝑛𝑛𝛼𝛼 𝑒𝑒4𝑦𝑦4𝑧𝑧4

Γ(𝑛𝑛𝛼𝛼 + 1)

𝑁𝑁

𝑛𝑛=1

 

 
Now when 𝑁𝑁 → ∞ we obtained the follow solution                                            

(5.28) 
 

𝑢𝑢(𝑒𝑒,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = �
𝑡𝑡𝑛𝑛𝛼𝛼 𝑒𝑒4𝑦𝑦4𝑧𝑧4

Γ(𝑛𝑛𝛼𝛼 + 1)

∞

𝑛𝑛=0

− 𝑒𝑒4𝑦𝑦4𝑧𝑧4

= 𝑒𝑒4𝑦𝑦4𝑧𝑧4(𝐸𝐸𝛼𝛼(𝑡𝑡𝛼𝛼) − 1) 
Where  𝐸𝐸𝛼𝛼(𝑡𝑡𝛼𝛼) is the generalized Mittag-Leffler function. 
Note that in the case 𝛼𝛼 = 1 
 
                                                    
𝑢𝑢(𝑒𝑒,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝑒𝑒4𝑦𝑦4𝑧𝑧4(exp(𝑡𝑡) − 1)                                (5.29) 
 

This is the exact solution for this case. 
 
 
 
 
 
 
 
 
 
 
 
 

VI.  COMPARISON OF METHODS 
This section is devoted to the comparison between the two 

integral transform methods. 

The two methods are very powerful and efficient techniques 

for solving different kinds of linear and nonlinear fractional 

differential equations arising in different fields of science and 

engineering. However, it can be noted that the HDM has an 

advantage over the HPSTM which is that it solves the 

nonlinear problems using only the inverse operator which is 

simply the fractional integral. There is no need to use any 

other inverse transform to find the components of the series 

solutions as in the case of HPSTM. In addition the calculations 

involved in HDM are very simple and straightforward.  In 

conclusion, the HDM and the HPSTM may be considered as a 

nice refinement in existing numerical techniques and might 

find wide applications. 

 

Table 1: Numerical results of equation (5.2) via mathematica 

   HPSTM 
and 
HDM 

HPSTM 
and 
HDM 

HPSTM 
and HDM   

t x y 𝛼𝛼

= 1.25 

𝛼𝛼

= 1.75 

𝛼𝛼

= 2.0 

Exact Errors 

0.2

5 

0.

5 

0.

5 

1.

0 

1.

0 

0.

5 

1.

0 

0.

5 

1.

0 

0.6436

24 

0.9015

11 

0.9015

11 

0.9386

76 

0.6660

50 

0.9294

40 

0.9294

40 

0.9652

71 

0.6816

39 

0.9489

85 

0.9489

85 

0.9839

86 

0.6816

39 

0.9489

85 

0.9489

85 

0.9839

86 

0 

0 

0 

0 

0.5 0.

5 

0.

5 

1.

0 

1.

0 

0.

5 

1.

0 

0.

5 

1.

0 

0.3665

63 

0.6913

70 

0.6913

70 

0.8469

06 

0.4402

70 

0.7888

06 

0.7888

06 

0.9442

15 

0.4794

25 

0.8414

71 

0.8414

71 

0.9974

95 

0.4794

26 

0.8414

71 

0.8414

71 

0.9974

95 

0.0000

06 

0 

0 

0 

0.7

5 

0.

5 

0.

5 

0.0670

24 

0.1925

05 

0.2474

02 

0.2474

04 

0.0000

02 
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1.

0 

0.

5 

1.

0 

1.

0 

0.

5 

1.

0 

0.4215

20 

0.4215

20 

0.6728

13 

0.6004

31 

0.6004

31 

0.8613

1 

0.6816

36 

0.6816

36 

0.9489

82 

0.6816

39 

0.6816

39 

0.9489

85 

0.0000

03 

0.0000

03 

0.0000

03 

1.0 0.

5 

1.

0 

0.

5 

1.

0 

0.

5 

1.

0 

0.

5 

1.

0 

-

0.2082

46 

0.1417

97 

0.1417

97 

0.4571

23 

-

0.0543

57 

0.3857

25 

0.3857

25 

0.7313

69 

-

0.0000

019 

0.4794

01 

0.4794

01 

0.8414

48 

0.0000

00 

0.4794

26 

0.4794

26 

0.8414

48 

0.0000

19 

0.0000

25 

0.0000

25 

0 

 
The approximate solution of equation (5.2) obtained by the 
present methods is close at hand to the exact solution. It is to 
be noted that only the fourth-order term of the HDM and 
HPSTM were used to evaluate the approximate solutions for 
Figures 1. It is evident that the efficiency of the present 
method can be noticeably improved by computing additional 
terms of 𝑢𝑢(𝑒𝑒, 𝑡𝑡) when the HDM is used. 

 Figure 1: Numerical simulation of the approximated solution of 
equation (5.2). 

 

VII. CONCLUSION 
We studied two integral transform methods for solving 
fractional nonlinear partial differential equation. The first 
method namely homotopy perturbation Sumudu transform 
method is the coupling of the Sumudu transform and the HPM 
using He’s polynomials. The second method namely 
Homotopy decomposition method is the combination of 
Adomian decomposition method, pertubation technique and an 
astute use of Abel’s integral. Both methods fared well. We 
presented numerical simulations on different equations. We 
also gave a graphical representation of a solution. The two 
methods are efficient on different kinds of linear and nonlinear 
fractional differential equations arising in fields of science and 
engineering. The HDM nonetheless has a complexity 
advantage over the HPSTM. It needs only one inverse 
operator, which is simply the fractional integral to solve those 
nonlinear problems. No extra inverse transform is needed to 
find the components of the series solutions as in the case of 
HPSTM. Thereof calculations involved in HDM are slimpler 
and straightforward. In comparison the HDM is more user 
friendly than the HSPTM. 
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